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1. INTRODUCTION

The short-arc model used at AFGL, the goals of which have included

the computation of a relatively smooth surface approximating the geoid over the

oceanic areas, is concerned with adjusting global satellite altimeter data in

terms of a truncated set of spherical-harmonic (S.H.) potential coefficients.

The altimeter data have been considered as the main source of observed

quantities; gravity anomalies and other sources of geopotential information

have been incorporated via the weighted S.H. coefficients. Six weighted state

vector parameters per orbital arc are also included in the simultaneous least-

squares process. One of the products of this adjustment is a revised set of

S.H. coefficients which can be used to predict geoid undulations, gravity

anomalies and other quantities related to the disturbing potential (e.g., de-

flections of the vertical) on a global scale. The main role of this adjust-

ment is to provide a basis for a more detailed representation of the earth's

gravity field to be carried out by means of subsequent adjustments.

The increasingly high quality of satellite altimeter measurements,

in conjunction with the improvements in satellite ephemeris, calls for an ad-

justment model where at least some of the temporal variations in the ocean

surface should be taken into account. The most important variations are those

caused by the tide-generating forces of the moon and the sun. Of these,

eleven long-period, diurnal, and semidiurnal tidal effects have been subjected

to adjustment within the overall altimetric adjustment as described in [Blaha,

1982). The initial (approximate) surface tide for the long-period constituents

has been expressed through a relatively simple model based on the equilibrium

tide with the earth deformation included. And the initial surface tide for
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the diurnal and semidiurnal constituents has been based on a more realistic

tidal model which takes into account the forces of friction and viscosity,

the self-gravitation, the ocean loading effects, etc., and where the ocean

tide has been expressed with the aid of spherical-harmonic tidal coeffici-

ents developed by Estes [1980]. The adjustable parameters modifying the initial

tidal effects have been the amplitude corrections (for all the constituents)

and the phase angle corrections (for the diurnal and semidiurnal constituents).

The global adjustment results in a "trend surface" approximating

the geoid through the adjusted S.H. potential coefficients, and in the resid-

uals representing the suppressed geoidal detail. Due to the relatively small

amplitude of the geoidal residuals, the introduction of the spherical approxi-

mation in a subsequent adjustment is inconsequential. In the previous AFGL

reports, e.g. [Blaha, 1979, 1980] , one such adjustment has been developed

in terms of point masses. In this approach, the location of the point masses

is stipulated beforehand and only the point-mass (P.M.) magnitudes act as ad-

justable parameters. The role of these parameters is not merely to accommo-

date, in the least-squares sense, the residuals from the previous adjustment,

but also to provide high-resolution predictions of the desired geophysical

quantities.

The inclusion of the tidal parameters in the global adjustment

results in an improved trend surface, as well as in improved residuals which

otherwise would absorb the tidal variations. This, in turn, benefits the

P.M. adjustment discussed above. The superimposition of the geoidal residuals

on the adjusted trend surface results in new quantities, "observed" geoid

undulations, which describe the surface called here the "observed" geoid.

-2-
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The role of the tidal adjustment in Improving the geoidal residuals and the

corresponding "observed" geoid undulations will be discussed in Chapter 2

which will also outline the importance of these quantities in various

geophysical tasks.

In the past, the P.M. parameters have been used in refining the

geoidal surface -- and the knowledge of the earth's gravity field in general --

only over limited areas. This has been imputable to computer limitations,

which are already felt when the number of P.M. parameters surpasses 200. In

such adjustments all the point masses have been considered in conjunction

with every observation point, i.e., all the P.M. parameters have been included

in every observation equation. Although this is the proper approach from the

theoretical standpoint, it makes a large-area or a global adjustment impracti-

cal in that exceedingly many small-area adjustments would have to be carried

out in adjacent blocks in order to produce, for example, a geoidal map of a

large ocean basin. Nonetheless, a simple elimination of point masses rela-

tively far from an observation point could not alone alleviate this problem.

The solution to this problem will be developed in Chapter 3 featuring a string

of procedures assembled in what may be called a "modified Choleski algorithm".

Li Chapter 4, together with the Appendix, will be devoted to developing

a new observational mode in terms of both the S.H. and P.M. parameters. This

mode represents the rates in the deflections of the vertical along a given

route. The adjustment model for the deflection rates has been inspired by

the development of inertial instrumentation used with growing success in

various geodetic tasks, notab • r f .in al navigation.

-3-



The adjustment models in terms of the P.M. parameters described

in previous AFGL reports have been concerned with a single P.M. layer, i.e.,

with the point masses all located at the same depth. In Chapter 5 a concept

of "twin" point masses located along the same normal to the earth's surface

will be developed, corresponding to the notion of a double P.M. layer. All

the observational modes treated previously will be given a twin P.M. formu-

lation, including the deflection rates introduced above.
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2, ROLE OF THE TIDAL ADJUSTMENT IN COMPUTING THE "OBSERVED"GEOIDAS THE BASIS FOR A DETAILED GRAVITY FIELD REPRESENTATION

2.1 General Discussion

The parameters involved in the short-arc adjustment of satellite

altimetry are divided into three groups: 1) corrections to the spherical-

harmonic (S.H.) potential coefficients, 2) tidal parameters, and 3) cor-

rections to the state vector (s.v.) components. The first group consists

of 225 parameters in the case a (14,14) truncated S.H. model is used. The

second group, absent in previous adjustments of satellite altimetry at AFGL,

comprises two parameters per tidal constituent except for the long-period

effects where this number is one per constituent. The first two groups are

assigned permanent storage in the computer core. The third group consists of

six s.v. parameters per (short) orbital arc. These parameters as well as

the appropriate portions of normal equations are assigned reusable storage

which is one of the main features of the short-arc algorithm described in

detail in several AFGL reports and papers (for example, its brief review in-

cluding several recent features can be found in [Blaha, 1981]). With the

aid of this algorithn, the s.v. parameters are eliminated from the normal

equations and are solved for later, after the solution of the first two

groups of parameters, arc by arc.

At the outset it is useful to briefly recapitulate the highlights

of the tidal adjustment as conceived in [Blaha, 1982], with emphasis on diurnal

and semidiurnal constituents. It is based on a priori tidal information sup-

plied by means of two (m,m) sets of S.H. tidal coefficients per constituent,

-



or 2(m+1) 2 coefficients. However, these coefficients are not being adjusted

at all. Only two quantities, which are two specific functions of these

coefficients, are adjustable for the chosen constituents: a parameter

representing a proportional change in amplitude for the whole globe, and a

parameter representing a change in phase angle for the whole globe. Accord-

ingly, these parameters do not change with location or time. They also have

a plausible physical meaning. In considering a global co-range map, the first

would amount to changing the co-range number by the same proportion every-

where; and in considering a global co-tidal map, the second would amount to

changing the phase angles by the same amount everywhere.

The above two parameters are not completely free to adjust but

should be weighted according to their reliability. Clearly, since the tidal

coefficients have been obtained by utilizing independent information subject

to the solution of the Laplace Tidal Equations, their weight should not be

zero. (These equations take into account the forces of friction and viscosity,

the Coriolis force, the spatial distribution of depth, as well as the self-

gravitation and the ocean loading effects as described in more detail in

[Blaha, 1982], where heavy use was made of [Vani'*ek, 1980], [Estes, 1980],

[Parke and hendershott, 1980] and [Schwiderski, 1980].) And since the above

two parameters represent certain linear combinations of the tidal coef-

ficients, their weight should not be zero, either. Due to the lack of

better information, the "one sigma" assigned for the independent weighting

of these parameters in [Blaha, 1982] corresponded to 0.5 for the relative

amplitude and 10 for the phase angle.

-6-
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However, exceptions to any such weighting play an important role,

depending on the satellite orbital characteristics. For example, care should

be exercised when weighting the constituents Ki, P1 ' $2 and K2 in conjunction

with SEASAT altimeter data. As stated in [TOPEX, 1981], in this case the

diurnal constituents K and P1 are aliased to a six-month and a constant

constituent, respectively. The two semidiurnal constituents are similarly

aliased to a six-month and a three-month constituent. Since the useful life

span of SEASAT amounted to only about three months, most of these constituents

cannot be properly resolved (even w'th aliasing taken into consideration), as

is already the case with the semiannual constituent SSa. Accordingly, the

a priori sigmas associated with the eight pertinent parameters (two para-

meters for eachof the K1, P13 S2 and K2 constituents) have been substantially

lowered in a recent tidal adjustment at AFGL.

A crucial part of any discussion involving a tidal adjustment is

whether or not the tidal parameters are contaminated by geoidal and orbital

errors. In the present case, the effect of the two tidal parameters on the

modeled sea surface varies in time. For example, at a certain time when the

phase is "zero" the effect of the amplitude and thus also of the amplitude

change, whatever it may be, on the geocentric distance to the sea surface is

zero. At another time, the effect is maximum. The geoid, by definition, is

time invariant. This is true not only with respect to the geoidal features

that are known and expressed by some means (e.g. via S.H. potential coef-

ficients) but also with respect to the features not known or expressed, as

well as to the features expressed erroneously. From the foregoing it follows

that the present two-parameter solution should not be influenced, at least
6

in theory, by the presence of geoidal errors.

-7-
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A different question arises if one considers the observational

noise, assumed random. If the sigma (standard error) of this noise is

relatively large, many of the local tidal features may not be recoverable

due to numerical difficulties. But the present two parameters pertain to

all of the features, both large and small, in all of the oceans, associated

with the given constituent. Thus, changes in these parameters affect the

least-squares sum more than could be attributed to the comparable changes in

the individual tidal coefficients and their various combinations (especially

the combinations giving rise to small local tidal features). Accordingly,

these parameters can be resolved better than other tidal quantities could.

However, a good quality in the solution can be achieved only if these tidal

parameters are sufficiently independent of the systematic errors in the ad-

justment. The independence with regard to geoidal errors has been shown in

the preceding paragraph.

The effect of orbital errors on the recoverability of tidal para-

meters causes, in general, the greatest concern. In this context, the

reference heavily relied upon will be [Estes, 1980]. Its opening statements

acknowledge that the efforts to extract ocean tide information from satellite

altimetry data have been largely unsuccessful, mostly due to errors in the

orbit determination. In particular, it states:

"The tidal frequencies are well determined from astronomical
considerations, and computer simulations by Zetler and Maul
(1971) and by Won et al. (1977) strongly indicate the pos-
sibility of recovering the principal tides with widely spaced
time sampling using this type of data. However, these simula-
tions have treated measurement noise and random orbit error,
but have not considered the aliasing effects of systematic
orbit error, which over local regions can resemble a tide signal."

* -8-



At this point one notices the term "local regions", which can be

contrasted to the global character of the above two parameters. The same

reference further states that unmodeled systematic errors are significant

and must be considered in the analysis for tidal structure from satellite

altimeter data. Here the term "tidal structure" clearly applies to all of

the features pertaining to a given tidal constituent, not merely to the

amplitude and phase changes made uniform for the whole globe.

The main result of the above reference is expressed on page 92:

"The present results demonstrate that with adequate modeling
of the ephemeris errors to reduce the aliasing of the tides,
simultaneous estimation of the tide model and radial orbit
error model parameters will accurately recover the principal
tidal constituents."

It will be shown that the present model is different from Estes' (and from

that of the other investigators as quoted above) and that it does not require

model parameters for systematic orbital errors. The key consideration lies

in its scope, in that it does not seek to recover the entire tidal consti-

tuent as describedby2(m+1)2 S.H. tidal coefficients. Instead, it attempts

to recover only two parameters which, furthermore, are weighted.

The concern addressed in [Estes, 1980] is the separability of the

orbit error and the tide (see p.76). But the term "tide" implies all of the

S.H. tidal coefficients. This is clear, for example, from p.83 where the

total number of adjustment parameters is given as

220xNC + 50x(2NP+IB+IS).

The first term pertains to all the S.H. tidal coefficients for all the tidal

-9-
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constituents. The second term then includes the model parameters for

systematic orbital errors on all of the 50 satellite arcs considered. One

further notices the statement on page 81:

"In the least-squares recovery for the model parameters,
the a priori values of the expansion coefficients are set
to zero."

At this point, the S.H. coefficients in [Estes, 1980] are seen as:

a) not known a priori,

b) given zero values a priori,

c) given zero weight a priori,

d) all subject to adjustment.

On the other hand, the S.H. tidal coefficients in the present adjustment are

a) known a priori,

b) given their a priori values obtained from an independent
source,

c) not considered for weighting, etc., because they are not
adjustable parameters individually; in particular,

d) only two special combinations are subject to adjustment,
they are assigned two parameters and these are attributed
weights according to their reliability.

Except for the two special kinds of changes as embodied by the

above two parameters, the whole configuration (in space and time) of the

tidal constituent in question is adopted completely from the a priori

information. Clearly, if one wanted to resolve all of the S.H. tidal

-10-



coefficients, one would be faced with the necessity of modeling the orbital

errors as demonstrated by Estes [1980]. In circumventing such a task, the

present model represents a limited adjustment which can still improve the

tidal knowledge, reduce the residuals and, perhaps, indicate deficiencies in

the a priori tidal information by using satellite altimetry as an indepen-

dent source. The term "limited adjustment" should be understood a) as in-

corporating only two parameters per constituent, and b) as considering even

these parameters weighted. Due to the weighting, unless there exists a

strong inconsistency between the altimetry and the a priori tidal information,

the corrections to these parameters are expected to be relatively small.

The characteristics of the present model are further elucidated if

one recalls that a tidal constituent is described by several properties,

such as the number and locations of amphidromic points, the shape of the

co-phase lines (emanating from the above points) anywhere on the globe, the

shape of the co-range lines anywhere on the globe, etc. These properties

are described by the a priori information considered here to be the S.H.

tidal coefficients. If these coefficients were subject to adjustment,

changes in any or all of them would bring changes to any or all of the above

properties and vice versa. Thus, if altimeter data were contaminated by

systematic errors over a given area, the coefficients resolved in an adjust-

ment would in general all be affected to a certain extent. This, in turn,

would affect any or all of the tidal properties in that area.

However, the present tidal model allows for only two very special

changes in two specific properties: 1) the change in co-range numbers by

the same proportion over the whole globe and 2) the change in co-phase

-11
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numbers by the same amount over the whole globe, out of an infinite number

of all possible global and local changes. As it has just been indicated,

the local properties respond to systematic orbital changes in various areas

and during various time periods. But only some very special systematic

errors in the orbit, present all over the globe all of the time, could

introduce changes in the above two special properties. Even though syste-

matic orbital errors exist they tend to "average out" in space and time,

especially periodic errors. One could conclude these heuristic arguments

by stating that if any properties of a tidal constituent are insensitive

to such systematic orbital errors, it is those representing the very special

global shifts in the co-range and co-phase lines described by the two tidal

parameters in the present adjustment model.

-12- L



2.2 Effect of Tidal Modeling on the SEASAT Altimeter Adjustment

During recent data reductions at AFGL, some 6,700 arcs of SEASAT

altimetry have been adjusted in the short-arc mode, where the arcs' durations

have been seven minutes or less. This adjustment has yielded for M2 a 22%

reduction in amplitude and a 0.70 change in phase angle as given by the

initial set of (12,12) S.H. tidal coefficients supplied by Estes [1980].

Such small changes indicate a realistic model for this constituent whose

effect is twice to several times greater than the effect of the other tidal

constituents. The permanent tide is an exception to this statement, but its

effect is still lower than that of M2; mathematically, it can be related to

the earth's flattening.

The inclusion of the tidal effects into the adjustment has re-

sulted in slight overall reductions in the size of the residuals and the

related quantities, as compared to the original adjustment where these

effects were not considered. But to better understand the relative small-

ness of these reductions the difference between the "tide" (denoted by the

* index "t") and the "no tide" (denoted by the index "nt") results are pre-

sented, where v is the residual and Au is the "up" correction to the s.v.

components:

t nt

A(Au) =Au - Au
t nt

From randomly distributed satellite passes all over the globe, it has been

found that the average Av and average A(Au) are nearly zero; their RMS values

-13-



have been computed as

RMS (Av) = 0.047m

RMS[ A(Au)] 0.187m

Using a majority of the adjusted arcs, vt and vnt have been found

to have a nearly zero average value; further,

RMS (vt) =1.733m , RMS(V) = 1.734m.

Clearly, the RMS improvement in vt as compared to values vnt is very small

because RMS (Av), although itself reaching 5cm, is small by comparison. In

2 2 2fact, it turns out that 1.733 + 0.047 1.734 , which could be given a rough

interpretation where Av could represent random errors attached to vt in order

to yield v in a stochastic process on a sphere. A reduction in RMS (Au) is

also very small, represented by

RMS (Au ) = 1.869m , RMS (Aut) - 1.875m

In analogy to the above, RMS [A(Au)] is small when compared to these values

and A(Au) can be given an interpretation similar to that for Av. The RMS

value of 1.869m (and also 1.875m) in the "up" correction to the state vectors

compares very well with the a priori sigma of 1.6m associated with the NSWC

precise ephemeris used.

One of the most important results of SEASAT altimetry and tidal

adjustment are the "observed" geoid undulations, denoted N,,o.,, describing

the "observed" geoid. The quotes are used to indicate that certain

-14-



improvements have taken place in relation to more directly observed undula-

tions, called here the "raw" geoid undulations. The latter, denoted N,, r'

describe the "raw" geoid illustrated in Figure 1. A "raw" geoid undulation

is given essentially as the initial radial distance (from the geocenter) to

the satellite, minus the radial distance to the altimeter foct-point on

the ellipsoid, minus the altimeter me'surement, plus the small correction

"d", due to the earth's flattening, mentioned e.g. in Section 4.1 of [Blaha,

1982]. The "observed" geoid, depicted in Figure 2, can be constructed from

the "raw" geoid through two refinements, 1) by utilizing the adjusted

(rather than initial) s.v. components and 2) by considering the adjusted

tidal effects.

The direct representation of the "observed" geoid is made through

the first equation in Figure 2,

N,,O,, = Na + v

where Na is the adjusted geoid undulation computed from the adjusted set of

S.H. potential coefficients and v is the residual as introduced earlier.

The representation displaying the difference between the "observed" and

the "raw" geoids is given in the second equation of the same figure as

N,,r= N,"r. 1 2 .

where -i1 is the improvement due to the orbital adjustment (i.e., adjustment

of the s.v. components) and -i is the improvement due to the adjusted tidal2 -1

effects. At a mid-arc epoch the quantity -i coincides with the "up" cor-

rection whose characteristics have been already discussed. The RMS of -i
2
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Altimeter observation from
approximate satellite position

"raw" geoi d

approximate spherical-
harmonic geoid N /

Nr,

reference
ellipsoid N

Nor, = NO + L ..... No,, = "raw" geoid undulation

No = geoid undulation correspond-
Ing to approximate spherical-
harmonic potential coefficients

L = constant term of altimeter
observation equation in the
spherical-harmonic model

Figure 1

Illustration of the "raw" geoid
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Altimeter observation from
adjusted satellite position

"raw" geoid ---...

"observed" geoid

adjusted S.H. geoid

reference
ellipsoid

N,,i,, = Na + v N, = "observed" geoid undulation

Na = geoid undulation corresponding to
adjusted S.H. potential coefficients

v = residual in the S.H. model

N.,o,= Nor" - i- 2 ..... -i I = "mprovement due to
orbital adjustment

-i= improvement due to

tidal adjustment
b"1

Figure 2

Illustration of the "observed" geoid together with the
improvements due to orbital and tidal adjustment
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has been computed from the randomly distributed arcs mentioned earlier as 29cm,

which is indeed a realistic value for open ocean.

The improvements in N,,o, due to the tidal adjustment can be assessed

by comparing the corresponding results with the non-tidal adjustment according

to

AN,, 0  ANa + Av

where Av was already defined and where

a a - a

ANa = N a -
t nt4

AN,1o1  N1Ot - Ni

From the same arcs as before, the RMS values have been computed as

RMS (ANa) = 0.111m

RMS (AN,,.) = 0.121m

The improvements in Na and, more importantly, in N,,011 due to the tidal adjustment

are thus seen to be at the decimeter level.

In the past, the "observed" geoid undulations along the SEASAT passes

were useful in a study of ocean-bottom phenomena, especially the bathymetry.

3ut the benefits of the "observed" geoid do not end there. For example, after

having a smooth "trend surface" (corresponding to a 14,14 S.H. model or other-

wise) removed from this geoid, the resulting differenced undulations can

serve in expressing the geoidal surface to a desired resolution, whether on a

regional or a global scale.

-18-



2.3 Summary and Assessment of the "Observed" Geoid

The adjustment model of satellite altimetry presented herein has

been based on the short-arc algorithm. In addition to the newly introduced

tidal parameters the adjustment model includes a set of low degree and order

spherical-harmonic potential coefficients, typically a (14,14) set, and a

set of orbital parameters comprising six state vector components per orbital

arc. All these parameters are subject to a simultaneous least-squares ad-

justment. In earlier as well as recent adjustments, the potential coef-

ficients and the state vector components have been weighted according to

their reliability specified at the source (GEM 10 coefficients, NSWC precise

ephemeris). The weights for the tidal parameters have been introduced in

[Blaha, 1982] as corresponding to the a priori sipma of 1 (long-period

constituents) or 0.5 (diurnal and semidiurnal constituents) for the relative

amplitudes, and to the a priori sigma of 100 for the phase angles. However,

the weights have been substantially increased in the case of K1, P' S2 and

K2 constituents which cannot be properly resolved by SEASAT altimetry and

would otherwise be aliased into constituents of lower frequencies.

The adjustment including the tidal effects represents an improve-

ment over an earlier non-tidal adjustment of altimeter observations. The

differences between the two kinds of adjustments translate into about 11cm

RMS for the adjusted geoid (computed from the adjusted coefficients), 5cm RMS

for the residuals, 19cm RMS for the "up" component of the state vectors and

12cm RMS for the "observed" geoid. The latter is obtained by adding the

residuals to the corresponding adjusted geoid undulations, and is equivalent

to the directly observed "raw" geoid improved through the adjustment

1,
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corrections to the state vectors and through the adjusted tidal effects.

Since the "observed" geoid plays a major role in a detailed determination

of the earth's gravity field, an improvement at a decimeter level can be

significant.

The features offered by the short-arc altimetry adjustment in-

cluding the tidal effects are now briefly summarized:

- The adjustment is global in nature and is capable of discerning

important tidal effects.

- The inclusion of the tidal effects has lead to a 5cm RMS improve-

ment in the residuals (as opposed to 3 "non-tidal" adjustment)

with the consequence of a slight reduction in the overall magnitude

of the residuals.

- A similar conclusion has been reached for the "up" corrections to

the state vectors (the improvement has been 19cm RMS), whose over-

all RMS value of 1.87m compares very well with the a priori sigma

of 1.6m.

- The improvements in the adjusted geoid (computed from the adjusted

spherical-harmonic potential coefficieits) and in the "observed"

geoid have amounted to 11cm and 12cm RMS, respectively.

- The "observed" geoid and the corresponding residuals can play an

important role in detecting and studying a variety of ocean-bottom

phenomena.

- The "observed" geoid can serve in refining the global oceanic geoid
via various prediction techniques. One such technique uses the

point-mass parameters as explained in previous AFGL reports as well
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as in Chapters 3 and 5 herein. As an example of another technique,

the "observed" geoid can be used to produce a high degree and order

set of spherical-harmonic potential coefficients via integral for-

mulas, which can then serve in predicting geoid undulations and

other geophysical quantities related to the disturbing potential

(e.g., gravity anomalies, deflections of the vertical, etc.).

- One can conclude that in taking advantage of the adjusted state vec-

tors and the adjusted tidal effects, and of the high-resolution

residuals at the same time, the "observed" geoid leads to improvements

in a detailed representation of the earth's gravity field. As one

example of using these high-resolution residuals in an independent

approach, techniques are being developed at AFGL to compute gravity

anomalies from the "observed" geoid or the corresponding residuals

along certain ocean trench areas, which have already shown a good

agreement with the ground truth.
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3. LARGE AREA ADJUSTMENT USING THE POINT MASS PARAMETERS

3.1 Notes on the Strategy in Choosing
the Depth-Side Ratio of Point Masses

In one of the original reports on a point-mass (P.M.) adjustment,

[Needham, 1970] suggested the depth/side ratio for point masses, d/s, as

0.8/1. That study concentrated to a great extent on gravity anomalies.

In the AFGL report [Blaha, 1979], both gravity anomalies and geoid undula-

tions were taken into consideration in the computer simulations which

eventually lead to the recommendation that the above ratio be doubled, in

the sense d/s= 1.6/1. However, due to the computer core limitations, both

the simulated data and the spherical-harmonic (S.H.) coefficients recovered

from the first adjustment corresponded to only a very low degree and order

S.H. expansion. In a typical case, "errorless" data were generated with a

given (10,10) set and the first (global) S.H. adjustment was performed in

terms of a (6.6) set. This means that the P.M. parameters were to accom-

modate the residuals from the first adjustment, which only contained the

gravity field information within (7,7) to (10,10) truncation.

At the present, the first adjustment alone corresponds to a (14,

14) set of S.H. potential coefficients and the P.M. parameters (i.e., P.M.

magnitudes) are distributed typically in a 2°x2' equilateral grid which

serves to accommodate the residuals within an up to about (90,90) equivalent

truncated set. It is clear that the P.M. depth should be related to the

information contained within (15,15) to (90,90) truncated sets, whereas the

simulations, as stated above, could only take into consideration (7,7) to

(10,10) sets. For this reason the ratio 1.6/1 is not considered final.
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Another motivation for re-examining the ratio d/s= 1.6/1 is

practical in nature. If all the P.M. parameters were included in the for-

mation of every observation equation as was the case with the above computer

simulations, the computer run-time would be exceedingly high, especially if

a detailed, large-scale adjustment of the oceanic geoid were required.

Furthermore, the computer storage difficulties would be almost insurmountable

without the use of an algorithm tailored for a banded structure of normal

equations. Such an algorithm, described in the next section, stipulates

that beyond a certain spherical cap centered on an observation point (or,

equivalently, beyond a certain cut-off distance) the P.M. parameters are

ignored in the pertinent observation equation. This introduces approxima-

tions in the adjustment model which, however, are inconsequential if the

effect of the neglected P.M. parameters on the modeled value at the observa-

tion point is very small compared to the effect of the point masses located

in the vicinity of this point. In using a special arrangement of the P.M.

parameters, the above cut-off distance represents a transition from a full

matrix of normal equations (N) to a banded matrix. The next paragraph

further elaborates on this property.

In a P.M. adjustment model the correlation between the parameters

decreases as the distance between the corresponding point masses grows

larger. In using a special design for grouping the parameters, most of the

off-diagonal elements in the matrix N can be made very small (in the sense

that the further from the main diagonal, the smaller the elements become).

Without a significant loss of accuracy some of these elements can be set to

zero, resulting essentially in a banded system of normal equations. In
6

practice, this task can be accomplished at the level of observation

L
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equations, in conjunction with the cut-off distance described above. The

resulting system can then be resolved with a great efficiency by a modified

Choleski algorithm. Such an algorithm allows for the inclusion of many

more P.M. parameters in the adjustment, perhaps ten-fold, than would other-

wise be possible due to the computer storage and run-time limitations.

This approach can be used in conjunction with both the single and the twin

point masses (the latter are described in Chapter5). As a result of the

above modeling approximation, a detailed resolution of the geoidal surface

and the earth's gravity field is made possible on a large, or even global,

scale.

The efficiency of the modified Choleski algorithm increases, both

from the run-time and computer core standpoints, if the bandwidth in the

matrix N decreases. In considering a suitable arrangement of the parameters

according to the P.M. locations, the bandwidth is linked directly to the

size of the spherical cap, in the sense that a smaller cut-off distance re-

suits most often in a smaller bandwidth. But the cut-off distance can be

reduced without unduly compromising the rigor of the solution only if the

"kernel" function, representing the effect of a point mass on the modeled

value, decreases sufficiently with distance. When examining the relative

values of this function at various n-multiples of the P.M. separation s,

one could be guided by the following very approximate classifications:

40% - 50% effect remains ..... cut-off decision is marginal,

20% - 40% effect remains ..... cut-off decision is sufficient,

under 20% effect remains ..... cut-off decision is more than
sufficient.
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Clearly, a shallower point mass results in a kernel function

which decreases more rapidly with increasing distance. If the ratio d/s=

1.6/1 were used, the cut-off decision would have to be made in favor of

n= 3 or n- 4 with regard to some of the observational modes described in

[Blaha, 1980], especially the gec d undulations. BeIng derived directly

from satellite altimetry, the geoid undulations represent the most impor-

tant mode in the P.M. adjustment. With the cut-off distance of 3s or 4s

the computer requirements would still be unrealistically high for a geoidal

adjustment in a large ocean basin such as the Indian Ocean, etc. However,

if d/s is lowered to the original ratio of 0.8/1, the same approximation

level is compatible with the cut-off distance of only 1.5s or 2s. One

could lower this ratio even further but it might not be desirable for other

reasons (in [Needham, 1970], this ratio represented a close relationship

between the P.M. blocks and the gravity anomaly blocks). Be that as it may,

the 0.8/1 ratio adopted in conjunction with the cut-off distance of 1.5s

appears satisfactory for the purpose at hand, as is illustrated next.

In view of the new ratio d/s= 0.8/1, the kernel functions for the

five observational modes analysed in [Blaha, 1980] must be re-examined. The

value s of the P.M. separation now corresponds to 445 km (4' in arc measure),

whereas the value of d remains at 350 km. The theoretical outcome of such

an analysis is not tied to a specific P.M. separation (for example, 20 in

arc measure could be used as well, etc.) because one is interested merely in

the relative P.M. effect as a function of n. The results presented in the

-6above reference, computed for a point mass whose magnitude is a 10- th part

of the earth's mass, are modified as follows:
4
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Geoid undulations

n 0 ..... 116 m (100%) n = 1.5 ..... 55.2 m (47.6%)

n = 0.5 ..... 98.9 m (85.3%) n = 2 ..... 43.6 m (37.6%)

n = 1 ..... 73.1 m (63.0%) n =2.5 ..... 35.8 m (30.9%)

Gravity anomalies

n = 0 ..... 290 mgal (100%) n = ..... 62.0 mgal (21.4%)

n = 0.5 ..... 172 mgal (59.3%) n = 1.5 ..... 21.2 mgal (7.3%)

Deflections of the vertical

n = 0 ..... 0.0' (0%) n = 1 ..... 20.5" (79.8%)

n = 0.25 ..... 18.0" (70.0%) n = 1.5 ..... 13.2" (51.4%)

n = 0.5 ..... 25.4" (98.8%) n = 2 ..... 8.7" (33.9%)

n = 0.57 ..... 25.7" (100%) n = 2.5 ..... 6.0" (23.3%)

n = 3 ..... 4.4" (17.1%)

Horizontal gradients of gravity disturbance

- 0 ..... 0.00 E ( 0%) n = 0.5 ..... 7.54 E (97.3%)

n = 0.25 ..... 6.68 E (86.2%) n = 1 ..... 3.44 E (44.4%)

n = 0.45 ..... 7.75 E (100%) n = 1.5 ..... 1.33 E (17.2%)

n = 2 ..... 0.58 E ( 7.5%)

Vertical gradients of gravity disturbance

n = 0 ..... 18.59 E (100%) n = 1 ..... 0.67 E ( 3.6%)

n = 0.5 ..... 6.97 E (37.5%) n = 1.5 ..... -0.19 E (-1.0%)
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As it appears from the above, the cut-off distance at nz 1.5 is

more than sufficient for all the observational modes except geoid undula-

tions and deflections of the vertical, for which it can be termed marginal.

However, due to practical considerations (especially the bandwiath) this

distance is adopted in all cases. If the ratio d/s= 1.6/1 had been used for

undulations, n=l.5 would have corresponded to the effect of about 75%. This

would have lowered the rigor of the least-squares adjustment, increased the

residuals, etc. A test adjustment for a limited area in the North Atlantic

has confirmed that with the same cut-off distance of 1.5s, the 0.8/1 ratio

leads to a very slightly lower RMS residual than the 1.6/1 ratio. In

particular, the 1.6/1 ratio has produced a 1.59 m RMS residual, the 1.2/1

ratio has produced a 1.58 m RMS residual, and the 0.8/1 ratio has produced

a 1.56 m RMS residual using the same data of SEASAT altimetry. The computer

simulations mentioned earlier yielded a different outcome (a higher ratio

resulted in a lower RMS residual) due, to a great extent, to the theoretical

treatment in which the cut-off distance was infinite, and also due to a low

level of geoidal variation as implied by the generated data.
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3.2 Point-Mass Algorithm for a Banded System of Normal Equations

The cornerstone of the present development is an application of

the Choleski algorithm to a large scale geoid determination from satellite

altimetry. The reason for using this algorithm is that it lends itself

well to an accurate and efficient solution of nonsingular (therefore,

positive-definite) systems of normal equations, especially banded systems.

The latter are characterized by a great number of zero elements in the

matrix of normal equations (N), located outside of a central band. How-

ever, before arriving at a banded system a reformulation of the least-squares

problem often has to take place.

In the present context one strives for the smallest possible number

of parameters, i.e., point-mass (P.M.) magnitudes, to be involved in one

observation equation. But this is only a part of the task, and an easy part

at that; the number of P.M. in such an equation can be made almost arbitrar-

ily small by decreasing the dimension of a spherical cap centered on an

observation point beyond which the P.M. are ignored. Clearly, this repre-

sents a simplification which should not be overused because the rigor of

the solution could suffer. Besides, if the numbering of the parameters were

done in a haphazard way, the span between the P.M. with the lowest number

and the one with the highest number in the observation equation could still

be great and thus the bandwidth would be large. There might be a great

number of zeros within the band, but this represents no advantage since such

zeros cannot benefit the algorithm. The main task, therefore, is that of a

proper design of the P.M. network and of P.M. numbering.
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The most natural distribution of P.M. is that of an equilateral

grid, in that it does not favor any particular region and the resolution is

uniform. A basic example of an equilateral grid of P.M. appears below. The

parameters are numbered in columns (N-S direction) because it is anticipated

that the longitudinal extent of the grid will be greater than its extent in

latitude and thus a smaller span will be involved with one observation point.

If the ocean basin is too great for a strip-like grid of P.M. to cover it,

overlapping grids can eventually result in a uniform geoidal representation

of this basin and, indeed, of all of the world's oceans. The observations

for each strip would have to overlap as well, for the sake of a smooth

transition of geoid contours, etc., between the strips. As a practical matter,

several adjacent strips may be present in one adjustment. In a number of

cases along the borderlines, two P.M. parameters will be assigned the same

physical location, one P.M. belonging to the upper strip and the other one,

with a much higher rank number, belonging to the lower strip. Because of the

rank disparity the algorithm will treat these double P.M. completely inde-

pendently. To assure continuity between the strips (predictions, contour

lines), each such location could be assigned one final parameter represented

by the average of the two P.M. magnitudes. However, this would imply the

renumbering of the parameters before the predictions could begin. The

simplest solution to this problem,yielding exactly the same results, is to

leave the numbering unchanged and to divide the magnitude of each double

P.M. by two.
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1 n 1 +1 2n 1 +1 3n 1 +1
x x x x x x x..

2 n 1 +2 2ni+2
X X9 X x X

3 n 1 +3 2n,+3
X X X X x

4
x X x X x

n, 2n, 3n 1
X X x

In the illustration above the "x" represent the P.M. and "e" is the

observation point whose observation equation is being formed. If s is the

separation of neighboring P.M. and if the radius around a beyond which the

P.M. are ignored in this equation is just under 1.5s, the span of the P.M.

involved is 2n1+3, the present case comprising the P.M. numbered 1 as the

lowest number and 2n1+3 as the highest number. There are, of course, many

P.M. in between which are omitted from this observation equation (e.g. those

numbered 4, 5, ..., n1+4, etc.). The number of "rows" of P.M. is denoted as

n and the number of "columns" is denoted as n2. The total number of para-

meters (n) in such a grid is then

n = n1 n2 . (3.1)

On the other hand, the bandwidth (b) in the matrix of normal equations under
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the circumstances illustrated above is

b = 2n.+3 (3.2)

The bandwidth is defined as the largest number of elements in any row of N,

starting with the diagonal element, beyond which all the elements are zeros.

It is given by the 7argest span in the matrix of observation equations (A)

which, in the present case, is 2n1+3.

The physical limitations to the geoidal representation, both in

the extent of the area and in the resolution capabilities, are given by the

number of elements in N which have to be stored. In the case of no band-

width implementation this storage space (S) is

S = n(n+l)/2 (3.3)

elements, provided only the upper triangular portion of N is stored (for the

whole matrix N this storage would be n 2). On the other hand, if only the

bandwidth is stored, starting with the diagonal elements, the storage space

(S') becomes

S' = bn . (3.4)

This storage is actually conservative, in the sense that the band has been

extended by (b-1)b/2 elements (zeros) in order to conform to a rectangular

form facilitating the implementationof a modified Choleski algorithm.
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In considering (3.1)-(3.4), the storage savings associated with

the bandwidth approach can be expressed as

S'I/S = 4(n + 3/2)/(n+ 1) 4/n (3.5)
2

The approximate relation in (3.5) can be adopted for a reasonably large n1 ,

perhaps 20 or more. It shows that with an increasing number of "columns" of

P.M. the storage economies grow. Thus if n2 = 100, the economies should im-

prove about 25-fold. This can be illustrated with an example where n1=20,

n 2=100 and thus n=2000. The approximate value of S'/S was just shown to be

1/25 while the exact value is 1/23.3. In particular, S=2,001,000 and

S'= 86,000. Thus one can see the beneficial effect of the bandwidth approach

not only from the economy point of view in itself but, especially, because

it allows an adjustment on a large scale which would otherwise be unthinkable.

Due to possible irregularities in the P.M. grid the band can ini-

tially be larger than the final b. If the former is adopted in the algorithm,

one or more of its first rows could contain only zeros. This would detract

from possible economies but, most of all, it would make the algorithm break

down, as if N were singular. For this reason it is useful to search for zero

rows in the band, eliminate them and arrive at a final bandwidth. The

original bandwidth can be denoted as max b and it can be stipulated as 2n +31

or perhaps even higher. The final bandwidth is denoted as b; in most cases

it will be the same as max b, but its implementation is a simple matter well

worth the effort.

Next, the formation of the special matrix T will be addressed, based

on one row (Ai-row) of A. The transposition of this row results in a column
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which, when post-multiplied by A.-row fills the matrix N (mostly with zeros).

When this operation is performed with all the other rows corresponding to

all the other observations, where the contributions are added algebraically,

the final matrix N is formed. All the A.-rows are assumed to have been

scaled by the a priori sigma of the observations considered mutually inde-

pendent so that weighting need not be considered. The right-hand side

(column vector U) of normal equations is formed in a similar fashion, except

that the transposed A. -row is post-multiplied by the corresponding constant

bterm c (an element of L -L° in adjustment notations). Due to the span con-

siderations, the A.-row will have only b elements (actually, one would start

with max b elements and, at the end, "squeeze out" the zero rows from T, if

any; but it is not difficult to imagine the following scheme apply with max

b replacing b).

A.-row const. term1

123 ... b_ -1

11 12 13 ii In 1

122 23 2i 2n 2

3

N-matrix . U-vector

1 iix x... x i
2 :, i+1
3

b0

0I

U~ i~b

b '7 ji+b'

:nn n
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Depicted above is the formation of N with the aid of one A. -row;

the cther such rows would perform a similar role as already explained. The

U-vector is also illustrated. The zig-zagging line indicates the upper-

triangular portion of N which is of interest. The first element in A.-row
1

corresponds to the column i in N. In the computer, the rank number of the

P.M. i is retained for addressing in N and the A.-row's addressing begins
1

with 1. It ends with b which, in N, corresponds to i+b', where

b' = b - 1 (3.6)

.V The important property of the algorithm being developed is that the T matrix

will not comprise the whole upper triangular portion of N, but only its b-band

(the zeros outside the band are simply disregarded). To facilitate the ad-

dressing, T is enlarged to include the (nonexisting) elements in N which

would fill a triangular matrix extending from the upper-left corner of the

latter. Such a triangular matrix would continue the border of N along the

Gashed line for the length of b' elements; its base would also have b' ele-

ments so that the total number of elements in it would be (b-1)b/2. If

this matrix is adjoined to the T-portion of N, the resulting array T will

have b "jagged" rows and n columns. This array is finally "straightened out"

to form a rectangular array which is the desired matrix T with b rows and n

columns.

The rows in N are represented by ascending diagonals in T as in-

dicated below, where the elements "x" correspond to the elements so denoted

in the last illustration. The (b-1)b/2 nonexisting elements of N discussed
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above are represented by zeros in T. Clearly, the diagonal elements in N

occupy the last row in T. Thus the "ii" element in N corresponds to the

"bi" element in T as illustrated.

1 2 3 ... b' i ... i+b' ... n
1 x

T-matrix x

b-l1 x

bbi

The matrix T is not formed from N (this would entail a large storage)

but directly from the A. -rows. The element ii in N has the location bi in T;1

the element next to the right in N, i,(i+l), has the location (b-1),(i+1) in

T, followed by (b-2),(i+2), etc. The last element within the band b in that

row of N has the location 1,(i+b') in f. Thus the matrix N has served only

mentally, without any computer core requirements. All the "ascending diagonals"

in T are formed according to the same principle, except that the last diagonals

end at the column n and do not reach the first row of f (they have fewer

elements than b). The vector U is not modified in conjunction with the for-

mation of T. Mathematically, the above principle of addressing can be

symbolized as follows:
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ii b,i; i= 1,2,...,n (3.7a)

i,j b-(j-i),j; j i+1,i+2,...,n (3.7b)

Next, the modified Choleski algorithm will be developed to treat

the problem at hand, in conjunction with the above matrix T. With the custo-

mary adjustment notations the least-squares solution of the vector of n

I (unknown) parameters, X, is expressed as

X=N U

where

N = ATA , U AT(Lb - LO)

and where Lb is the vector of observations while LO is the vector of the cor-

responding initial values. As mentioned earlier, the weighting of observa-

tions need not be applied here. The variance-covariance matrix (E) for the

parameters after the adjustment is obtained as

EX = N
- .

If F is a w-vector of linear combinations of the parameters,

where 'U is a matrix of dimensions nuw , one has

E UTN- U,
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which follows from the law of the variance-covariance propagation.

If N is nonsingular it is positive definite and it can be expres-

sed as a product of a nonsingular matrix by its transpose, namely

TN =TT.

In the "regular" Choleski algorithm (without the bandwidth considerations)

T is in general an upper-triangular matrix with no other particular pattern

and thus no special system of addressing. But this does not alter the

present general considerations. In taking advantage of the triangular de-

composition the following results are obtained at once:
'9I
X = T- R , F =rR ,.-.,

where

R = (TT)-'U, (TT)'I

and where the property N-1= T-I(TT)- 1 has been utilized.

In collecting the pertinent formulas, one first writes

T. T

TTT=N , T TRR=U ,TR.

which can be represented by

T>

T  T R [N U U , (3.8a)
noin n.1 now n-n n-1 now

where the dimensions are also indicated. The remaining formulas of interest

7 -are
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X T-  R , (3.8b)

nal n.n n-l

w.w won now

The computation of the elements in T, R and R via (3.8a) is sometimes called

"forward reduction" and the computation of X in (3.8b) may be called "back

substitution".

The elements of T in (3.8a) are computed row by row, starting with

the "ii" element and proceeding to the right until the "in" element is com-

puted. The computation of the elements in R and R follows the same alge-

braic pattern, to the extent that R and the columns in R can be treated

simply as additional columns to T (beyond the n-th column). If the computa-

tion proceeds as indicated, i.e., starting with the first element in the

first row and following through with that row till completion, then start-

ing with the "22" element, etc., the elements in T, R and R thus computed

can replace the corresponding elements in N, U and U because the original

elements in the latter three arrays will no longer be needed in the computa-

tions. This leads to savings of the core space where only N (upper tri-

angular portion), U and U need to be stored, becoming later T (upper-

triangular), R and R. During the step (3.8b), the elements of X may

similarly replace the elements of R and thus the column which started

originally as U will become X at the end of all the computations. The

Choleski algorithm is then seen as performing the following transformations

of elements in the same computer storage:
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[N U U]+[T R R] * [T X R] . (3.9)

The algebraic operations carrying out (3.8a) in the "regular"

Choleski algorithm (with "regular" addressing in T) are

t. (n ( 2 t2 t2_ i) (3.10a)

t ( ni tli t~i "' t i-lt3.0b

i ij ( ij -i ij- t2it2j" ... "i-l'iti-l'j)/ii 7 31b

ri =(U- tirI -t2 r2 - ... - ti1 iri1 )/tii , (3.iic)

r--j'= (uiy' tir-i' t~~' j- T -,lj')/ti " (3.10d)

Here j starts with i+1 and proceeds to n whereas j' proceeds from 1 to w,

all for the given i; subsequently i increases by one, and so on (i started

with 1 and will end with n). In the step (3.8b), i starts with n, then

continues with n-1, etc., and ends with 1. Thus x is computed first, x 1

follows in the process where the known x is also used, etc., hence the

name "back substitution". With this provision (3.8b) translates into

X. :(ri - t. X - - -t. x i V~~)ti (3.11)
1 iin n ti,n-i n-1 ' i,i +1 i

which can start after the completion of the step (3.8a).

The next step is only intermediate and corresponds to (3.10a-d)

and (3.11) in the case of a banded N matrix, but without any change in

addressing. Advantage is merely taken of the zeros outside the band in

that they are disregarded and not used in computations. A remark to be

made with regard to the indices is that in (3.12a-d) below they can be
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A

only positive (zero and negative indices are disregarded), that j in

(3.12b) ends with i+b' or n, whichever is smaller, and that indices larger

than n in (3.13) are disregarded.

2 2 2
t:i= (n1i- tib+l,i - ti-b+2,i  t ii i ) 2 (3.12a)

tij = (fil- tjb+l,itj b+l,j- tj-b+2,it ib+2,j- - ti 1 ,ti 1 j/tii , (3.12b)

i i-b+l,i ri-b+1 ti-b+2,i ri-b+2 " i-,i ri-i /t ii (3.12c)

13ijc (uij'' ti-b+l,i -b+l,j' ti-b+2 ,ir-b+2 ,j' ... i-li r-i,j' )/tii;

(3.12d)

x. = (ri - t. x - ti X - - t. x )/t (3.13)i i,i+i i+1 i+2Xi+2 "" ij+b-1 i+b- i "

Finally, advantage is taken of the banded structure of N by replacing

it with T described previously. This entails the change in addressing pre-

sented as (3.7a,b). The matrix T then also changes its shape and addressing;

for this reason it should perhaps be called by a different name, but here the

symbol "T" is retained with the knowledge that it is now a rectangular matrix

of dimensions ben. This having been said, the elements in the (new) T matrix,

in R and R, and finally in X are presented below where, in addition to (3.6),

also the following notation is used:

b"= b' - (- i) . (3.14)

The formulas are written in their final form convenient for programing. The

principal index i runs again from I to n, the index j within each i ends

again with inf(i-b',n), etc.
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A

b'

tbi 2 tbi " ' t2i ) (3.15a)
L=I

b"

b-(j-i),j b-(j-i),j - j-i+t,i ti bi

i-I

i<b: ri  (u i bi+,ir tbi (3.15c)

b'

i>b: r. (ui  Y bi (3.15c')

i-i
i(b : r ij , (j,- t b-i+ , ir~ ,Z )/t bi ,  (3.15d)

b'i b: r.j .,bi ; (3.15d')

1) 1] U -iL, biZ=I

inf(b',n-i)
Xi= (ri " t,i+ Xi+z)/tbi . (3.16)

L=I

Instead of the full variance-covariance matrix of F, only the chosen

sigmas and the correlation coefficients will be computed. The input para-

meters will be the pairs jj and j2 which will serve to choose the appropriate

columns of T and compute the desired values as follows:

na ) (317a)

=a (: r j , (3.17b)

n

P~l2(= I " ")I(C"")y a3 13 (3.17c)
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Some economies can be realized if one takes into account that several elements

in the columns of U may be zeros; however, only those zero elements which

precede the first nonzero element are beneficial. Similar considerations

could apply also with regard to U but this is merely a theoretical case

since as a rule U is a full vector. Suppose that in a column j' of U the

first nonzero element is at the address i=J'. Then the first nonzero element

in the j'-th column of R appears also at the address i=J' so that the com-

putations of the preceding elements as in (3.15d), (3.15d') can be skipped

and these elements can be set directly to zero. Furthermore,the multiplica-

tions on the right-hand sides of (3.15d), (3.15d') with these zero elements

can likewise be skipped, in other words, Z=1 in the summations can be re-

placed with the appropriate V. In the same vein, k=1 in (3.17a,b) can be

replaced by the corresponding J and J , respectively, and £=1 in (3.17c) can
2

be replaced by sup(J{,J2).

Finally, one notices that the symbolism (3.9) would, in the modified

Choleski algorithm, read as

U U T R R - T X R . (3.18)
b-n nxl naw ban nal now ban nul now

The brackets have been left out because the complete expression is not one

matrix.

The approach utilizing the P.M. parameters is based on the residuals

from a previous global adjustment in terms of spherical-harmonic potential

coefficients. The P.M. approach considers the residuals in the exact loca-

tions on the globe where the actual altimeter measurements took place.
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There are other interpolation and approximation techniques where the obser-

vations are "translocated" to some strategically advantageous positions,

such as to grid locations (equilateral, geographical, etc.). Such techniques

may be very crude (the location is considered shifted but the value is taken

without any correction) or quite elaborate (e.g., as in the "best linear

prediction" method). Since the values at shifted locations are estimated

and not measured, any such technique entails approximations which are avoided

in the P.M. adjustment. As a trade-off, some of the above techniques are

very efficient computationally. The present approach with the modified

Choleski algorithm seeks to improve the computational efficiency while re-

laxing the rigor of the solution as little as possible.
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14, MODEL FOR DEFLECTION RATES IN TERMS OF
SPHERICAL HARMONICS AND POINT MASSES

The need to develop mathematical foundations for new observational

modes is dictated by the surge in various new or improved operational systems.

For example, broad advances have been made in the area of inertial instrumen-

tation which has been used with growing success in inertial navigation. In

using this instrumentation, the observational process can be designed to yield

differential changes in the deflections of the vertical along a given route.

Thus the quantities to be modeled by a given set of parameters, such as the

spherical-harmonic (S.H.) potential coefficients or the point mass (P.M.)

magnitudes, can be viewed as the deflection rates at chosen (observational)

points. Such points would usually be distributed along profiles whose azi-

muth is denoted by a. At each point the measured quantities to be modeled are

denoted as and n, associated with a specific a. This type of data involves

second derivatives of the disturbing potential (T) with respect to length

elements (ds), which could be particularly useful for the resolution of

short-wavelength features in a local gravity field. The development contain-

ed herein is based on [Hotine, 1969] abbreviated as [H] and on [Blaha, 1980]

abbreviated as [B]. It could be considered, in fact, to be an extension of

Chapter 4 in [B] insofar as the S.H. and P.M. (single layer) parameters are

concerned, and it could follow Section 4.6 in this reference.
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4.1 Mathematical Background

Similar to the material contained in paragraph 19 on page 7 of

[H], the derivative of a function F with respect to the length element along

a desired direction reads

aF/as= (DF/xr)(axr/ s) 7 F rp

which is an invariant (independent of the coordinate system represented by

Xr), where

F = gradient of F

r

p= unit vector in the desired direction,

whose length element is ds.

In the present context, pr lies in a level surface and its azimuth is a.

Similar to equation 12.006 of [H] we write

r = Z sin + r os ,
(1 (2)C

where (1) refers to an easterly direction along which the differential dis-

tance is denoted dsE and (2) refers to a northerly direction associated with

dsN. In the spherical coordinate system {X, ,r}, the first two coordinates

are the geocentric longitude and latitude, respectively, and the third is

the geocentric radial distance. In agreement with (3.48) of [B] we have

kr ={/(r cosT), 0, 01, kr =0, 1/r, 01,
(1) (2)

pr = {(I/r cosT)sina, (1/r)cost, 0}, (4.1)
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where the index "r" should not be confused with the radial distance denoted

by the same letter. Here and in the sequel, (1/r cos-), etc., are written

to represent [1/(r cosY)], etc., since the latter notation would sometimes

contribute to a profusion of parentheses and brackets; there is no need for

the former notation to be confused with (I/r)cos-. As is customary with

tensor notations, the summation convention applies.

If 3F/as represents a deflection of the vertical (the sign change

follows from the convention explained on page 79 of [B]), F becomes the geoid

undulation N and we write for the deflections in the north and east direc-

tions, respectively:

.- 3N/s N Zr = -(1/r)3N/aT , (4.2)
N r (2)

n -aN/,s -N r = -(i/r cosT)aN/3X (4.3)
r~l

The rates of these quantities along the general azimuth a, along c=O and

along a= 90' are expressed as

a/;s -- 2ri/aSNas = rpr , (4.4)

: n/as -a 2N/ 3sEas = rpr  (4.5)

N N N rZ(2)
• n 3 - 2N/as 3s

N S E N r (2)'

2 r

N E (1)

*2 2 r" r,/ 3 SE - NI;s = r2r. •

-46-



The above relations do not mean that the same formulas will be
recovered for tE and n N Instead, another relationship will be derived for

checking purposes. First suppose that scalar functions of position F and H

are such that

H = aF/as _=F pr
r

Next identify another direction and its unit vector, etc., by primes, namely

.or
H' = aF/as' E F rp

Two kinds of derivatives are now formed:

aH/as' = a2F/asas' - (F pr) pS
r s

rt'/as = a2F!as'Ds - (F rIr) SP

Using the rules for covariant differentiation according to Chapter 3 of [H],

we have

(Fr pr)s F Fpr + F prr rs rs

pr =apr/axs + r k pk
s sk

the symbols Frs, rsk, symmetric in the lower indices, eventually cancel

out and need not be elaborated pon. Straightforward algebra yields

a2 F/3s'as- a2F/asas' = F [(p'r/axS)pS - (;Pr/3xs)p's]. (4.6)
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We now associate F with N and, anticipating the spherical

. •approximation, write

N = (1/G)T , (4.7)

where G is the average value of gravity at the earth's surface (approximately

980 gals). Equation (4.7) follows from the Bruns formula presented on page 85

of [Heiskanen and Moritz, 1967]. If ds and ds' are identified with dsN and

dsE , respectively, and other quantities are identified accordingly, it is

readily deduced that

a 2N/as as a2N/sass E E - N= (i/Gr 2cOsT)tgT aT/aX (4.8)
E N NE E N

In analogy to G in (4.7), r in the final formula can be substituted for by R,

the earth's mean radius (approximately 6371 km), for the deflection rates as

modeled customarily for the earth's surface.

In considering (4.1) and (4.7), the formulas (4.2) - (4.5) yield

-(1/Gr 2 )[(I/cos )(3 2 T/aXa)sina + (a2T/a 2)cosa] , (4.9)

= -(lIGr 2cosT)[(llcosT)(a 2T/X 2 )sina + (tgT aT/X

+ a2T/a3aT)cosa]. (4.10)

However, if the computation of a2T/aT is sought to be avoided as in the S.H.

model, one can take advantage of the Laplace condition for harmonic functions,

in particular,

AT 0
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The alternate formula for then reads
(4.9-)

=-(l/G)(1/r o (aT/aX3T)sina + [-(1/r cos2T)32T/ T/ar-

2
+ (tgq)/r )DT/3 - (2/r)aTI3r~cosad

where the expression inside the brackets replaces a 2T/3T2 in (4.9). Upon

setting a=90' in (4.9) or (4.9'), and a=0 in (4.10), the verification equation

(4.8) follows. If the formulas for the deflection rates in spherical approxi-

I mation should be used at aircraft or satellite altitudes, r and G values above

would be substituted for by their counterparts for the geop in question.
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4.2 Spherical-Harmonic Approach

In spherical approximation, the selected formulas in (3.77) of

[B] for r=R can be rewritten in terms of a set of S.H. potential coefficients

truncated at n=N as

N

-T/a = RG AS'(n)
n=2

N

3T/a = RG I AS(n) ,
n=2

N

aT/ar = -G Z (n+1)AS(n)
n=2

(4.11)
N

a 2T/3X = RG [ AS"(n) ,
n=2

N

a T/Xaf = RG I AS'(n)
n=2

N

a 2T/r 2 = (G/R) I (n+l)(n+2)AS(n)
n=2

where the notations, according to (3.76) and (3.78a-d) of [B], are

n
AS(n) = j (ACncos mX + AS sin mX)P (sinf)

M=0 n nm nm

n
AS'(n) H aAS/ax = I m(-AC sin mX + AS cos mX)P (sinT)

m=O nm rm nm
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=-AS"(n) a'AS/aX - m2 (AC cos mx + AS sin mx)P nm(sin) (4.12)

m=O

n
AS(n) EAS/T = [ (AC nCos mX + ASnsin mX)dPn(sinW)/d!F

m=O

n

AS'(n) a AS/3 = m(-ACnsin mX + AS COS mX)dPn(sin)/dd .
M=O

With C* representing the reference field, the notations areno

AC =C - C*no no no

for n=2, 4 and perhaps 6, the remaining AC and all of the AS being the
nmnm

coefficients C and S themselves.nm ru

Upon utilizing the notations (4.11), (4.12), the formulas (4.9')

and (4.10) lead to

N N
= -(I/R){(I/cos-) 1 AS'(n) sina - [(1/cos2T) I AS"(n)

n=2 n=2

N N
+ X n(n+l)AS(n) - tgT I ZS(n)] cosa} , (4.13)
n=2 n=2

N N
= -(1/R cosT){(1/cosT) I AS"(n) sins + [tgf I AS'(n)

n=2 n=2

*N - -+ I AS'(n)] cosa} . (4.14)
n=2

If a=90' and a=O are used in (4.13) and (4.14), respectively, the verification

equation (4.8) follows upon utilizing the notation from the first equation

of (4.11).
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( In following the same sequence of derivations as in [B], the

partial derivatives of the above quantities with respect to the S.H. coef-

ficients are expressed as

a =cn (1/R)[n(n+l)P n(sin) - tgT dP (sin)/d]cosx

Wac nm (1/R)(A sin mX - B cos mX)

Di Ias = (1/R)(A cos mX + B sin mX);
nm

3 IXnMC (mIR cosT)(C cos mX + D sin mX),

a /3S nm=(mIR cosT)(C sin mX - D cos mX);

the new notations in these expressions are

A =(M/cosW )[P (sin)/d~jsina

B ={[(1/Cos 2-)m 2 _ n(n+1)]P (sinT) + tqT dP (sinT)/dT}cosa;

nm

D [tg P M(sin) + dP nm (sino--/dTjcosa
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4.3 Approach Using a Single Layer of Point Masses

The notations in this analysis will be the same as those used in

[B], pages 67 and 68 for the point masses located at the depth d below the

sphere of radius R:

Ti = 1(1/2 j.)(kM). (4.15)j J )
J

where
(p' p2 2Fi)

1j 1 ij 

= the distance between the i-th (observation)
point and the j-th point mass,

R R-d

d = O.8s

s = the horizontal separation between point masses
considered in an equilateral grid in the adjust- (4.15')
ment model,

F.. = RRIcosi j

cosVpij = sino.sincj + coso cos( COSAX.i

AX,.. = .- X.,
1) i )

(kM) = the j-th scaled P.M. magnitude,J

the geocentric coordinates of a point k
k (either i or j).

-53J

6 .-53-.



In the case the observation points should not be at the earth's surface

but at aircraft or satellite altitudes (then R is larger than 6371 km),

d may have to be increased beyond the value indicated above if the loca-

tions of the point masses are still desired to be underneath the actual

earth's surface.

The deflection rates at the observation point i can be transcribed,

in spherical approximation, from (4.9) and (4.10) as follows:

- -(1/GR 2)[(1lcos i)( 2 T/ i 3ai)sina + (a2T il/)cos] , (4.16)

-(1/GR 2cOS4 i )[(I/cos i )(3 2Ti/;X?)sina + (tg i3Ti/ Xi  p.

+ a 2Ti/axii)Cosa] . (4.17)

The required partial derivatives of T. can be found from (4.15), and they
1

are listed as (4.7a-i) in [B]. Using these derivatives, after a few

aigebraic manipulations we find

= (R /GR) (I/Z )[(/cosij - t g)qiisino

(p. t . - cosip )cosa](kM) (4.18)
t "OO. (Pij3 )(P 2 O~j

ni -(RI/GR cos i) ( )[(/cosi Pijqij
J 1

- ic cos cosAXi)sina - pi.qijtij cosc](kM). , (4.19)

where
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2]

pi9 = 3RR /t9 '

tij = cos~isin j - sin~icosojcosA)iX

qi9 cosi cosjs ij •

Next we consider (4.18) and (4.19) for one point mass j and vary

the position of the observation point i by distances ns, where n is the num-

ber of intervals s along a general direction. As in [B], this strategy makes

it possible to see at how many intervals away from the observation point the

P.M. parameters still significantly affect the modeled value (and vice versa),

and should be included in the pertinent observation equation or prediction

formula. The inclusion of all the P.M. parameters in a large-area adjustment

would entail prohibitive computer core and run-time requirements. The con-

sideration of only one point mass removes the summation signs in (4.18) and

(4.19). As in [B] in comparable situations, the latitude of j is chosen zero,

c=O, which here simplifies also the formulas for tij, q.9 and cospij •

Since we are dealing with small changes, first-order approximations are further

introduced, such as

cosAij = 1 , sinAAij = AXij

coso i = 1 , sine i = Aoi j ,

etc., where

0i = i 0 AO ij
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In carrying out the straightforward algebra (in this process one

also realizes that pij is about two orders of magnitude greater than A. ij),

it follows from (4.18) and (4.19) that

i -(Rz/GR)(l/£j)[PijAiXi.i i.sina + (p 2 - 1)cosa](kM). (4.20)

r~= -(R IGR) (1/i.)[(pAX. 2 - 1)sin + p .A AX.jcosc](kM). (4.20')
1 ) / ij ij j

Clearly, whatever values are obtained for i with a given azimuth a='

are also the values obtained for i with c=900 -a' , and with AO and

AX. interchanged. Therefore, it is sufficient to examine only one ofii

these equations, for example (4.20), with regard to cut-off considerations

in the "worst situation". Such a situation depicts the greatest influence

of the P.M. at j upon the modeled value at i at various distances j-i, both

with respect to a and B, where a is the azimuth measured from j to i.

In angular measure s is denoted as Aw and the angular distances

between j and i proceed in n-multiples of Aw. We then have

i= n Aw A j = n AW cosa , AXi = n Aw sina . (4.21)

In view of (4.20), the following approximate relations are developed:

Z 2 R2AW2(n2 + 0.64)

(4.22)

pj 3/[Aw 2 (n2 + 0.64)]
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where d=O.8s from (4.15') in angular measure has been taken into account.

Equation (4.20) thus becomes

(4.23)
2 5/2 2. 2 2 2_

-C[1/(n2+0.64) ][3n sinS coss sina + (3n cos B- n 0.64)cosct]

C : R (kM) /(GR 4A2 ) (4.23')

In order to find the worst situation, the function f(a,s) forming

the second brackets in (4.23) is examined for local extremes, where

f(a,a) = a sins cosS sina + (b cos 2 - c)cos , (4.24)

a = 3n2  b = 3n % c = n2 + 0.64 (4.24')

One first forms af/3a= 0 and af/a5= 0 and seeks the solution for 8, for example,

after having eliminated a. The result is represented by

cos2  = (2bc - a2)/[2(b2 - a2)]

Without any further analysis one notices that such a local extreme does not

exist due to a= b in (4.24'). One can then proceed by examining different

azimuths a, held fixed, and searching for an extreme with respect to S. In

using this approach, the azimuths c=0, 450 and 90' are adopted.

Azimuth a=O. Here the second brackets in (4.23) contain only the

second term (with cosa replaced by 1). This is then called f(B) whose local

extremes are sought. Simple algebraic manipulations reveal that an extreme

occurs at 6=0 and that it represents a maximum; the second derivative of

f() with respect to B evaluated with 8=0 is negative. However, we are
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interested in a maximum in absolute value, which is seen to coincide with

the maximum just found when f(S) reaches at least n2 + 0.64. With a=0

this happens whenever n> 1.13. Since we are especially concerned with the

distances j-i in the vicinity of 1.5s, the results implied by the above

procedure are satisfactory. Thus, upon disregarding the signs the formula

and the values below represent the absolute maximum for the intervals of

interest:

0=, 3=0; Ei = -C[(2n2  0 0.64)/(n2 + 0.64)5/2] ; (4.25)

n = 0 ..... 100% n = 1 ..... -20.3%

n = 0.5 ...... 9.6% n = 1.5 ..... -13.9% (4.25')

n = 2 ..... - 8.2%

Note: The formula (4.25), examined for n, reveals a primary maximum at n=O

associated with "100%", and a secondary maximum at n=1 (more precisely

at n=0.98).

Azimuth x=450 . In this case both sini and cosa in (4.23) are

replaced by 0.7071 taken out of the brackets. A maximum for the new f(s)

occurs at =22.51 and it corresponds to the absolute maximum already for

n > 0.89, which is entirely satisfactory. Similar to (4.25), (4.25'),

this configuration is represented by

=45, 3=22.5; -C(0.7071)[(2.62n2- 0.64An 2 + 0.64)512]; (4.26)
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n = 0 ..... 100% n = 1 ..... -29.5%

n = 0.5 ..... -1.0% n = 1.5 ..... -19.0% (4.26')

n = 0.91 ..... -30.1% n = 2 ..... -10.9%

Note: In addition to the primary maximum at n=O, the formula (4.26) has a

secondary maximum at n=0.91.

Azimuth a=901. Now only the first term inside the second brackets

in (4.23) remains, for which the (absolute) maximum occurs at 8=45 ° . This

situation is depicted as follows:

a=90', 6=450; Ei "C[l'5n2 /(n 2 + 0.64)5/2] ; (4.27)

n = 0 ..... 0 n = 1 ..... -79.8%

n = 0.5 ..... - 92% n = 1.5 ..... -43.7%
(4.27')

n = 0.65 ..... -100% n = 2 ..... -23.7%

n = 2.5 ..... -13.8%

Note: The formula (4.27) reveals only the primary maximum at n=0.65.

In closing this part of the analysis, we comment that due to the

symmetry in the deflection-rate formulas in conjunction with the point mass

j located in the vicinity of the observation point i, it is sufficient to

consider the azimuths a and 6 in the first quadrant. In examining three

representative azimuths a (0, 450, 900) in conjunction with i , it is

noticed that a=900 depicts, by far, the "worst" situation. At a=0 the in-

fluence (at i) of the point mass (at j) is felt the least; the situation

for a=45' is only slightly "worse". But even for a=900 the cut-off dis-

tance of 1.5s corresponding to 43.7% is acceptable. Although it may be
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deemed marginal, it is still somewhat more satisfactory than the same

distance in the case of geoid undulations (under similar circumstances,

1.5s for geoid undulations is associated with 47.6%). In summary, the

"worst situation" corresponds to i for a=90' or to ni for cxO, with 45O

in both cases (interchanging A ij and AXi does not matter here). in other

words, most affected by a given point mass are the rates of change in

along the E-W direction and in n along the N-S direction, as modeled at
observation points located along the NE (and NW, etc.) direction from that

point mass.

14
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5. OBSERVATION MODES IN TERMS OF
A DOUBLE LAYER OF POINT MASSES

An analogy between the point-mass representation of the potential

and the density layer representation has been exploited in the past. If

also the double density layer concept is applied to the point-mass model,

it leads to the notion of a dipole. As in the double layer situation, two

point masses (P.M.) of the same magnitude but opposite signs can be imagined

located along the same normal to the reference surface. The depth, under-

neath the earth's surface, of the upper P.M. is denoted by d as in the

single P.M. approach. The depth of the lower, newly added P.M. is denoted

by

d' d + v ,

where v is the vertical separation between the twin point masses. And,

similar to the approach with the single P.M., the horizontal separation

between the neighboring twin P.M. is denoted by s.

In analogy to the concept of double layer, the minus mass (or

minus density) has no direct physical meaning in itself but is a useful

mathematical device. Although the number of P.M. themselves doubles with

respect to the single P.M. approach, the number of parameters remains the

same due to the condition that the P.M. along the surface normal differ

only in sign, not in magnitude. If v and thus also the depth of the lower

P.M. grows indefinitely, the characteristics of the single P.M. layer are

recovered. On the other hand, the decrease in v leads to different

characteristics which may be desirable in some respects. For example,
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if v becomes sufficiently small compared to s, such as v= 0.112s used herein

(corresponding to v= 50km for s=445km), the relative effect of a twin P.M.

on the modeled value decreases much more rapidly with distance than that of

a single P.M. With even smaller v this feature is further accentuated.

The above discussion implies that a given cut-off distance in the

double layer approach introduces fewer approximations in the adjustment

model than does the same distance in the single layer approach (under the

implied assumption of constant d). The cut-off distance is defined in

[Blaha, 1980] as the distance from an observation point beyond which no P.M.

parameters are considered in the formation of the pertinent observation

equation. If one tolerates about the same level of approximation in both

approaches, one can decrease the cut-off distance in the twin P.M. model and

thereby alleviate the computer run-time requirements. In the present analysis

the cut-off distance corresponds to 1.5s; the resulting approximations in

the double P.M. approach will be seen to be mostly inconsequential.

The present development is based in several respects on [Blaha,

1980], abbreviated here as [B]. The first section below is concerned with

developing the twin P.M. model for five observational (and prediction) modes

as presented in [B]. The five kinds of modeled quantities are: geoid un-

dulations, qravity anomalies, deflections of the vertical (north and east),

horizontal qradients of gravity disturbance (north and east), and vertical

gradients of qravity disturbance. The subsequent section deals with the twin

P.M. concept applied to the oew observational mode, the deflection rates.

Since both sections are intended to be essentially independent, minor over-

laps occur in a few instances.
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5.1 Adaptation of Five Observational Modes to Twin Point Masses

The geoid undulation at the (observation) point i due to single

point masses is, according to [B], equation (4.17):

N. = (1/G) (1/ki9 )(kM)j , (5.1)

where

. distance between the i-th (observation)
13 point and the j-th point mass,

(kM). = j-th scaled point-mass magnitude,

= (R' +R2  2F.) (5.2a)
13 1 1

R = R - d, (5.2b)

F.. R R cos. j  , (5.2c)

cos ij = sin i sino. + cos. coso. cos (x.' j) , (5.2d)

where R represents the earth's mean radius (6.371 km), G is the average value

of gravity on the earth' surface (980 gals), and where pij is the spherical

distance between the points ij with the coordinates (i,xi) and (o.,Xj),

respectively.

In the double P.M. approach, the second (deeper) layer of P.M. is

located at the sphere of radius R' from the earth's center, where

RI= R- d -v =R 1 -v
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or

R' R + dR ,(5.3a)R1 1 1

dR : -v . (5.3b)1

The other primed values are

F' = R R' cosp. , (5.4a)

ij 1 13

V = (R2 + R'2 - 2F' ) (5.4b)

The j-th scaled P.M. corresponding to R1 has the magnitude (kM)' such that

(kM')j = -(kM)j . (5.5)

The value of the geoid undulation due to the deeper point masses

is

N' = (1/G) (1/V9)(kM)

Upon taking (5.5) into account, the value corresponding to double point masses

(at depths R1 and R') is

N N. + N'

i.e.,

N = (1/G) (1/9 -I/9' )(kM) . (5.6)
Sj ij ij

The formation of observation equations, etc., could proceed in line with

Chapter 4 of [B] in conjunction with any observational mode. In particular,

a row in the matrix A as described in Section 4.1 of [B] could be formed

by omitting (kM). and utilizing the indices j to determine the ordering of

the elements in this matrix.
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The gravity anomaly at i due to the single point masses isj

Ag. (1/R) (11k.)[(R2 -F )/k,2 -2](kM) , (5.7)
1 3.)j ij i

as can be gathered from (4.19) of [B]. In analogy to the above, the gravity

anomaly in the double P.M. approach is

Ag. = 1/R) X {(1/. )[(R 2 - F. )/k2 2] -(1/V )[(R2- F'.)/p,2- 2]}(kM)..

(5.8)

The deflections of the vertical, and ivin the single P.M.

approach read (see 4.24 and 4.25 in [B]):

(5.9a)
E. -(R /G)'j (1/X3 )[coso sino. - sino. coso. cos(X- X)](kM).

The corresponding expressions in the double P.M. approach are

(5.10a)
=-(l/G) ( R /Z3 - R'/Z'3)[COS4 sinc, sin cost. cos(X X- JkM.

1 ij ij i J

= (G)~(R /j-R'/z')cs sinCA - X.)(M) . (5.10b)
1 lij ij 1 1 3J

The horizontal gradients of gravity disturbance, TZ and T *1
p.in the single P.M. approach read (see 4.28 and 4.29 in [B]):

(5.11a)

TZ -3R1  (1/Z5~ )(R- R cosip .)[coso. sino. - sin . cos *

mCOS(X X - .)j(kM).
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T = 3R1 Z (1/.j)(R- R cosi )cosPj sin(X i - X)(kM). . (5.11b)
zYi 1 1J ] 2

In the double P.M. approach the corresponding expressions are

= -3 ) [(R195)(R- R1 cosij) -(R'/I5)(R- R1 cospij)]
1X 2.J 12.

a[cosoi sinqj - sine i coso. cos( i - Xj)](kM)j , (5.12a)

T = 3 [(R /2 )(R- R1 cosij) -(R{/2ij)(R- R1 cos p )]ZY ~1 ii 1 i

Wcosp sin(X.- Xj)(kM) . (5.12b)

The vertical qradient of gravity disturbance at i in the single P.M.

approach reads (see 4.31 in [B]):

T = (1/,)[3(R-R1 cos ij)2/k2 - 1](kM) (5.13)ZZi  1ji ij

in the double P.M. approach the corresponding expression is

)2k 1]R (1/Z.)[3(R- 2. 2/ ,

i  Z {(II )[3(R- c~sij)219j _ 1] - R' cosi ) 2/9-2

- 1]}(kM)j . (5.14)

Next, a decision regarding a cut-off distance when adjusting a

double P.M. model will be made, again along the lines of [B], Chapter 4.

In this analysis, one twin point mass will be considered, (kM). and (kM)',

in conjunction with the observation point i on the earth's surface (here a

sphere of radius R=6,371 km). The depth (d) of the shallower P.M. is

taken, in agreement with the previous chapter, as a 0.8-multiple of the
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horizontal separation (s) between the twin point masses. Thus, if the

horizontal separation in degrees is so= 40, then

s 445 km

d = O.8s = 350.0 km

Rp = 6,021 km

The vertical separation between the twin P.M. is chosen as

v = 50 km

from which it follows that

R' = 5,971 km

The magnitude of (k ., is chosen to be a 10-6 -part of the earth's kMJ

(kM = 3.986x1014 m3/sec 2 ). Next, the position of the observation point i

is varied and the corresponding value N. computed. This variation can pro-

ceed by selected multiples of s, which make it possible to see at how many

s-intervals away from the observation point the P.M. parameters will still

significantly affect the modeled value (and vice versa) and should thereby

be included in the observation equation or in the prediction formulas. In

theory one would include all of the P.M. parameters in every observation

equation, but this would often result in prohibitive computer run-time re-

quirements.

If one single P.M. were considered (instead of a twin P.M.), the

formulas giving N. , Ag. , etc., would be written as they stand (see 5.1,

0 5.7, etc.), except that the symbol Z would be left out. In general, any
j
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such observable quantity at i can be symbolized by "0." and the coefficient

of (kM). can be denoted "Ci."•, so that

0. C..(kM) ,

where C.. is readily gathered from the pertinent formulas. Considering the

twin point masses, one hasj

0i = (C..- C'.)(kM) .
- I

If this model is linearized -- and thus the analysis is concerned with

tI relatively small separations between the twin P.M. along the vertical -- it

follows from (5.3b) that

0. = -(C ijMRI )(kM) dR (aC i/aRl )(kM)jv

This expression will now be examined in the context of all of the observa-

tional modes listed at the outset.
I'

For the geoid undulation N. , the model C.. reads

C = (1/G)(1/z..)
ij 1)

The straightforward differentiation yields

aCij/aR= (1/G)(li )a , (5.15)
1] 1

where

ai - - R cosiT, /t2, (5.16)
.ij 1J 1J 6
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and where ij' the angular separation between the points i and j, is taken

in terms of n-multiples of s(in angular measure). The approximate results

for N are presented as follows:

n = 0 ... 16.6 m (100%) n = 1.5 ... 1.6 m (10%)

n = 0.5 ... 10.1 m 61%) n = 2 ... 0.7 m 4%)

n= 1 ... 4.0m( 24%) n=2.5 ... 0.4m( 2%)

At the distance Is (corresponding here to 40) the effect of the twin P.M.

has diminished to about 24% of the maximum effect exercised directly under-

neath the observation point (at n=O). The corresponding distance could be

adopted as a cut-off distance with regard to both observations and predic-

tions. Clearly, the influence of the twin P.M. on the value of N. decreases
1-

much more rapidly than is the case with the single P.M. approach summarized

in Section 3.1, where, for example, n=2 still corresponds to an effect as

large as 37.6%.

The model for the gravity anomaly Ak reads

C = (1/R)(I/.ij)bij
b.. = CR2  F)/£2  - 2 (5.17)

which yields

3C ij/R1 = (1/R )(1/ ij) (aijbj + aijcj - r.j) (5.18)

c.. = 2(R2 -F.) IZ. 2(bij+2) , (5.19)

rij = R cos ij/zj . (5.20)
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The approximate results for are j
n = 0 ... 88.0 mgal (100%) n = 1 ... 0.9 mgal (1%)

n = 0.5 ... 30.4 mgal (34%) n = 1.5 ... -1.9 mgal (-2%)

At the distance of merely 0.5s (here 20) the percentage is already down to

34% and, even more importantly, it decreases so rapidly that at n=1 it is

1%. A cut-off decision made in favor of n=1 would be more than sufficient.

By comparison, in the single P.M. approach n=1 corresponds to 21.4%.

Similar to [B], the analysis of the deflections of the vertical

leads to the same results whether £ or is considered. The case with n

yields

3
C. = (R1/G)(1/tj)sij,

s.. = coso. sin(X i -xj) , (5.21)

where the point j is considered at the equator, thus cos4j = 1. Subsequently,

one has

3C ij/DR= (R1/G)(1/£ .)s. (1/R1 + 3a ij) . (5.22)

The approximate results pertaining to ni (or Ei) are

n = 0 ... 0.0" ( 0%) n = 1.5 ... 1.3" (16%)

n = 0.5 ... 8.0" (100%) n = 2 ... 0.5" (6%)

n = 1 ... 3.5" ( 44%) n = 2.5 ... 0.2" (3%)

A cur-off distance at 1.5s (here 60) would be more than sufficient,
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corresponding to about 16% of the maximum effect for n= 0.5. By comparison,

the single P.M. approach shows about the same effect (more precisely 17.1%)

for n= 3s.

The analysis of the horizontal gradients of gravity disturbance

produces the same results for either T or T gradient. The case withzx zy

T yieldszy£

15

SC13 =3Ri(1/ j)uijsij

uij = R - R1 cospij , (5.23)

where j is again taken at the equator; thus

3Cj/3R 1 = 3R (1I/£j)uit s j(I/R + 5aij- cosi j/u.j) (5.24)

The approximate results in E (Eotv6s, 0.1 mgal/km or 10-9 sec -2 ) pertaining

to T (or T ) are

n 0 ... 0.00 E 0%) n 1 ... 0.49 E (14%)

n = 0.25 ... 3.45 E (100%) n = 1.5 ... 0.03 E ( 1%)

n =0.5 ... 2.86 E (83%) n = 2 ... -0.02 E (-0.5%)

A cut-off distance at ls (here 40) would be more than sufficient, correspond-

ing to about 14% of the maximum effect at n= 0.25. By comparison, the single

P.M. approach shows about the same effect (more precisely 17.2%) for n= 1.5.
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The model for the vertical gradient of gravity disturbance Tzz.--~~1
yields

C.. 3 2 2

Cij = (1/9. )(3ui./2 ij - 1)

3C ij/R = 3(1/I£? )[(5Uij/i - !)aj - 2uijcosij/ij] . (5.25)

1.The approximate results forTz arej

n = 0 ... 7.96 E (100%) n = 1 ... -0.35 E (-4%)

n = 0.5 ... 1.16 E ( 15%) n = 1.5 ... -0.18 E (-2%)

A cut-off distance at 0.5s (here 20) appears more than sufficient, and it

corresponds to about 15% of the maximum effect at n=O. By comparison, the

single P.M. approach shows a 37.5% effect for the same distance.

I

-72-
I



5.2 Development of Deflection Rates in Terms of Twin Point Masses

The development in this section is based on the results from

Section 4.3, where the model for deflection rates has been formulated in

terms of single point masses. The notations of the previous section are

adopted without changes, with primes indicating the quantities connected

with the deeper layer of the point masses, "-" designating the quantities

resulting from the effect of both layersof point masses, v denoting the

vertical separation of the twin point masses, etc. Again, the twin point

masses have the same mass magnitude but the opposite sign. Thus, from

(4.18) and (4.19) we write the basic model for the deflection rates as

follows:

= (RI/GR) [ {[(1/e3.)(p..t - tg .) - (1/ 3 )(p' t - tg.)]
a. 1 3 1j 1 ij ijij 1J

.(q. /Coso.)sinct - [(I/Z3j)(p it 2- cos ij)

1j a i j ii j

_(/,3)( , 2
itj coswij)]cosa}(kM) j  (5.26)

aij ij ii J

i (RIGRcs) [ 1 3 )(p ..q2 _ cos. cos. cosAX ")(R1/G os j 1 j 1. 3 13

Pijq. . C0 i CO COSAXi).(cos i)sina

aj a.J 1] 1 J j

-(p.j/£2.- p~j/,3i)qi t..cosaj(kM). , (5.27)
1] 1j 13 23 13 1]
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where the trigonometric functions associated witn the uc eper point mass are

unchanged when passing to the primed quantities, including cos i., t.. and

qij, but where

Pj : 3RR'k .2

As in the approach with the single point masses in Section 4.3, we

consider only the effect of one P.M. magnitude located at the point j (where

j=O) on the model value at the (observation) point i. Adopting also the

previous notations and approximations, we can derive -- or transcribe from

(4.20) and (4.20') -- the following relations:

(5.28)

i .(RI/GR){(p ij/zj ij ijp /3)A ij A .ijsin + [(pij /Zj- pi/ij)A ij

(1/k3 1/.']coscd(kM).

(5.28')

= -(R1/GR){[(p ij.19,- pi  ij  3)Ax~j- (l/9.- 1/ )]sin

+ (p../Z3  /Z3 Pi i)AijAXijCOsa;(KM)j;

the comment made in conjunction with (4.20) and (4.20') can be adopted, word

for word, also in the present situation as depicted in the above two equa-

tions. Accordingly, only (5.28) will be examined with respect to a and a.

With regard to the vertical separation, we adopt

v = 0.112s
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which corresponds to v:50 km for s = 445km (this, in turn, corresponds to

4). Thus, recalling that in angular measure s has been denoted as Aw, we

have

d' = d + v = 0.912s = 0.912 R A, d'2 = 0.83 R2 A 2

If the value 0.64 in the formulas (4.22) is replaced by 0.83, it can readily

be shown that

13. (1/R3 Aw 3 ) [0.285/(n 2 + 0.64) 5/2] (
(5.29)

p. - .,3  (1/R3 AW5)[1.425/(n
2 + 0.64)7/2]Pij/ ij- Pij3ij3,

provided 0.83 - 0.64 = 0.19 can be considered small compared to n2 + 0.64,

which is quite acceptable for the values we are most interested in (between

n=1 and n=2). The relations in (5.29) are derived from

d(I/x)k/2 = -(k/2)(I/xk/2+l)dx

with x=n2 + 0.64, dx= 0.19 and k= 3 or 5.

If (5.28) is developed with the aid of (5.29), as well as with the

notations introduced in (4.21), it follows that

= -C[I/(n 2 + 0.64)71/2][1.425n2sin cosS sina

+ (1.425n 2cos 2 - 0.285n - 0.182)cos] , (5.30)
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where C is the same as in (4.23'). Since in view of (4.24), (4.24') we

again have a=b, an extreme for the function in the second brackets above

does not exist, and we proceed to examine a=O, 450 and 90', searching now

for extremes with respect to s. The strategy used for the single point

masses will be pursued here as well.

Azimuth =0. In exact analogy to Sect 4on 4.3, a maximum occurs

at =0 which now coincides with an absolute maximum already for n> 0.65 -.

(previously this held true for n> 1.13). Parallel to (4.25) and (4.25')

we have

U=O, S:0; -C[(1.140n 2  0.182)/(n2 + 0.64)7/2]; (5.31)

n = 0 ..... 100% n = 1 -19.5%

n =  0.5 ..... -17.8% n = 1.5 ..... -6.7% (5.31')

n =  0.69 ..... -28.3% n =  2  ..... -2.3%

Note: In addition to the primary maximum at n:O, a secondary maximum

exists at n=0.69. Beyond n=1 the values in (5.31') are seen to

decrease much more rapidly than their counterparts in (4.25').

Azimuth ,=45'. A maximum occurs at 5=22.50 as in Section 4.3,

but it now corresponds to an absolute maximum already for n> 0.56 (as

opposed to n>0.89 found previously). In analogy to (4.26) and (4.26') we

have

t=45' ,  $=22.50; 3£ -C[(1.435n2 - 0.182)/(n2 + 064)72o (5.32)
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n =  0 ..... 100% n = 1 ..... -25.6%

n = 0.5 ..... -30.6% n = 1.5 ..... -8.6% (5.32')

n = 0.66 ..... -39.6% n = 2 ..... -3.0%

Note: In addition to the primary maximum at n=O, a secondary maximum exists

at n= 0.66. Beyond n=1, the values in (5.32') decrease much more

rapidly than their counterparts in (4.26'), similar to the previous

case.

Azimuth =90'. Here again, the (absolute) maximum at 8=45' cor-

responds to its single P.M. counterpart. Similar to (4.27) and (4.27'),

the results are

C:900  a=4 5'; i -C[O.712n 2/(n2+ 0.64)7/2] (5.33)

n 0 ..... 0 n ..... -47.1%

n = 0.5 ..... -100% n : 1.5 ..... -14.6% (5.33')

n 2 ..... -4.9%

Note: The formula (5.33) reveals only the (primary) maximum at n=0.5 (more

precisely at n=0.51).

The case a=90° is again much "worse" than a=451 which, in turn,

is only slightly "worse" than ct=O. This is, accordingly, the "worst situa-

tion" as discussed previously in Section 4.3 dealing with the single point

masses. But even for a=90 0 the cut-off distance of 1.5s is more than sup-

ficient (it is associated with 14.6% while in the single P.M. approach we

had 43.7%). We can again summarize this development by stating that the

"worst situation" occurs for C. at o=90 0 or for ). at (=O, with S=45' in

both cases.
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6, CONCLUSIONS

The simultaneous global adjustment of satellite altimeter data

in terms of spherical-harmonic (S.H.) potential coefficients, tidal para-

meters and state vector (s.v.) components results in a smooth approximation

to the oceanic geoid, called the trend surface, and in the residuals con-

taining the suppressed geoidal detail. In addition to the trend surface, the

adjusted S.H. coefficients can express other features of the smoothed-out

global gravity field. For example, predicted values of gravity anomalies,

deflections of the vertical and other functions of the disturbing potential

can be computed in a desired grid from which contour maps can be constructed,

etc.

The satellite altimeter adjustments recently performed at AFGL are

based on the short-arc algorithm, where the arcs' lengths have been limited

to seven minutes or less and the data consist of SEASAT altimeter observations.

Each satellite arc is described by six s.v. parameters considered independent

from arc to arc. The tidal parameters consist of a global amplitude factor

and a global phase angle correction for each diurnal and semidiurnal constitu-

ent included in the adjustment. Each long-period constituent has been at-

tributed only the first parameter. The simultaneous adjustment with an un-

limited number of arcs is feasible only by virtue of eliminating the s.v.

parameters from the normal equations as soon as the last observation on a

given arc has been processed, and of re-usingthe same core space for the next

arc. The short-arc algorithm as well as the weignting of altimeter observa-

tions and all three groups of parameters have been described in the previous

AFGL reports.
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The (weighted) tidal parameters are shown in Chapter 2 to be es-

sentially uncontaminated by the geoidal errors or by the systematic orbital

errors. The insensitivity of these parameters to the geoidal errors stems

from the time-dependent properties of the former contrasted to the time

invariability of the latter. And the insensitivity of these parameters to

the systematic orbital errors stems from the global properties of the former

contrasted to the local character of the latter (the systematic errors change

from one area to another). Such advantages do not exist in a model where the

adjustment is made in terms of S.H. tidal coefficients. Although the

a priori values of such coefficients are used in the present model to de-

V scribe the approximate behavior of the pertinent diurnal or semidiurnal con-

stituent, only two of their very special linear combinations represented by

the above two tidal parameters are subject to adjustment. Clearly, non-

adjustable coefficients cannot be affected by orbital or other systematic

errors.

Chapter 2 also illustrates the improvements in the trend surface,

geoidal resid-als and "observed" geoid undulations due to the inclusion of

the tidal adjustment in the overall adjustment of satellite altimetry. The

geoidal residuals can be used as observations in a subsequent, or second-

phase, adjustment of a short-wavelength oceanic geoid in terms of point-mass

(P.M.) magnitudes as parameters. And the "observed" geoid undulations, ob-

tained by superimposing the geoidal residuals on the trend surface, can serve

in describing the geoidal detail in yet another fashion. As one example,

they can be used to produce a high-degree and order set of S.H. potential

coefficients via integral formulas (not via an adjustment), which can then
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serve in predicting the desired geophysical quantities. Further properties

and uses of the geoidal residuals and "observed" geoid undulations are listed

in the latter part of Chapter 2.

Chapter 3 is concerned with a reformulation of the second-phase

adjustment in terms of P.M. parameters, leading to a banded system of normal

equations. Such a system can be arrived at and resolved by addressing three

separate tasks. The first task is to eliminate a number of point masses

from a given observation equation. However, these point masses should be

located sufficiently far from the pertinent observation point so that the

rigor of the solution not be unduly compromised. Due to the bandwidth con-

siderations, the cut-off distance should be as small as practicable. This,

in turn, implies that the depth/side ratio characterizing the P.M. distribu-

tion should be reasonably small. As a result, the 1.6/1 ratio used recently

has been lowered to a 0.8/1 ratio. The second task is to arrange the P.M.

parameters in such a way that a banded structure may indeed materialize.

The first task alone would merely lead to a great number of zeros in the

normal equations, not necessarily to their banded structure. And the third

task is to solve the resulting system with a maximum efficiency through an

A adaptation of the well-known Choleski algorithm.

The combined solution to the three tasks above gives rise to a

"modified Choleski algorithm". Whereas previously only small areas could be

resolved in a P.M. approach, the oceanic geoid over entire ocean basins can

now be adjusted in a few overlapping strips of point masses. Indeed, the

modified Choleski algorithm reduces both the run-time and the core-space

4 requirements several fold. For example, 1,300 point masses can be deployed
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with this algorithm as compared to about 200 point masses which would have

been admissible otherwise.

In Chapter 4 a model for the deflection rates along a given route

is developed in tensor notations, and is subsequently specialized for the

S.H. and P.M. parameters. It is pointed out that the rate of change in the

north deflection of the vertical ( ) when proceeding eastward is not the

same as the rate of change in the east deflection of the vertical (n) when

proceeding northward. However, the difference between these two rates is ex-

pressed in a simple relationship which can serve as a useful verification.

The formulas developed in terms of the S.H. potential coefficients are veri-

fied in Chapter 4 and the formulas developed in terms of the P.M. parameters

are verified in the Appendix. Chapter 4 closes with an analysis of a cut-

off distance under varying circumstances. It is concluded that even in the

worst case situation the approximations associated with a recommended cut-off

distance are somewhat less serious than the approximations associated with

the same distance in the case of geoid undulations.

Chapter 5 transforms the observational modes developed and described

in the previous AFGL reports from the context of single point masses to the

context of twin point masses (the former implies a single P.M. layer while

the latter implies a double P.M. layer). These modes are: geoid undulations,

gravity anomalies, deflections of the vertical (north and east), horizontal

gradients of gravity disturbance (north and east), and vertical gradients of

gravity disturbance. In the latter part of Chapter 5 the same transformation

takes place also for the newly developed deflection rates. The deflection

rate formulas in terms of twin P.M. parameters can be verified in close
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analogy to their single P.M. counterparts. Since the same verification

takes place for the upper and the lower point mass, and since the contribu-

tions of these two point masses are added algebraically, the pertinent for-

mulas in the twin P.M. model are automatically verified. An analysis of all

the observational modes considered confirms the plausible property that if a

single point mass is made into a twin point mass, the effect exercised on a

modeled value decreases much more rapidly with distance.
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APPENDIX

VERIFICATION OF THE POINT-MASS MODEL FOR THE DEFLECTION RATES

The verification formula (4.8) for the deflection rates, applied

at the observation point i, reads

Ei "DNi) = (1/GR2cos0 tg DT T/ai'

where aTi/ax is given in [Blaha, 1980], equation (4.7b), as

aTi/aX i = -RR cosoi (1/tj )cososinAX i(kM),

with AX.. denoting X. -X. as before. We then have

E3 N 13 .-3

) J .)

On the other hand, the formula (4.18) with a=90' and the formula

(4.19) with a=O yield respectively:

E. = (RI/GRcosoi) Z (1/Z3.)(pijt. - tg)q(kM)j

N. = (RI/GRcos4 i) o (i/Z3j)p. qi t. (kM) j

. J

and thus

S" -" = -(R 1/GRcosi) (1/02.)tgiqij(kM). . (A.2)
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But due to the notation introduced following (4.19), namely

q. = coso coso sinAA ,

equation (A.2) becomes (A.1) and the verification is terminated.

L
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